Getting Started

In what follows we present the steps that should be taken to deploy LOCO-Analyst on your machine. We assume that you have Java 1.5 (or higher) already installed, as well as Eclipse IDE and Maven.

1. Unpack all the downloaded zipped project files (there are 7 of them)
2. Import all the projects into Eclipse as Maven Projects (File - > Import -> General -> Maven Projects). The projects should be imported in the following order:

· reload-jdom

· diva

· moonunit

· text-analysis

· feedback-core

· oats

· loco-analyst

3. Since not all the java libraries (jars) that are required for LOCO-Analyst, are available from Maven repositories, some of those libraries have to be added directly to the respective project’s classpath. Each project that requires some additional libraries (besides those listed in the dependencies section of the pom.xml file) has the lib directory where all those additional jar files are placed. So, for each project, the jar files from the lib directory have to be added to the project’s classpath. To do that in Eclipse, in the project’s Properties dialog (Project -> Properties) select the Java Build Path menu option and then the Libraries tab; add the jars from the lib directory using the Add Jar button.

4. Establish dependencies between projects (using Java Build Path -> Add Project); do that for the following projects:

- diva is dependent on reload-jdom
- moonunit is dependent on relaod-jdom and diva
- feedback-core is dependent on text-analysis
- oats is dependent on feedback-core
- loco-analyst is dependent on all 6 other projects

5. Select the EditorFrame class from loco-analyst project and Run it as a java application.
Once you start the application you might want to preview some examples of already generated feedback (those shown on demo videos). Therefore, we provide you with some examples of already generated feedback for the course CMPT100 taught at the University of Saskatchewan. These examples are available from http://jelenajovanovic.net/LOCO-Analyst/example/data.zip. After downloading and unpacking the data.zip file, the resulting (data) directory should be copy-pasted into the loco-analyst project (so that it is a sub-directory of the loco-analyst project’s directory; if there is already a sub-directory with the same name, overwrite it with this one). To try these examples, you will also need the content of the Programming Process learning module (used for the demos presented on video clips) and can download it from here: http://jelenajovanovic.net/LOCO-Analyst/example/ProgrammingProcess.zip. Unpack the ProgrammingProcess.zip archive file and store it at a place of your preference; after starting the program, you should choose the Preferences option from the Feedback menu (the additional menu that LOCO-analyst introduces into Reload Editor) and set the path to the Programming Process folder. Finally, since these examples are generated by the user “nbg11070” you'll have to login in using this username.
Requirements for generating feedback using LOCO-Analyst

To be able to use LOCO-Analyst to generate feedback for your online course, you’ll need the following:

· Data about users’ (students and teachers) interaction with the system. These data should be in a form compliant with the Learning Context ontology of the LOCO framework. That means that you would have to define a transformation from your system’s native format for log data to the Learning Context ontology. If your system stores those data in a database, the easiest way to do the conversion is to use D2RQ
 mapping language. We have already done these transformations for iHelp Course LMS, Moodle LMS, OATS collaborative tagging tool and ArgoUML software modeling tool.

· The content of your course in the form of a learning unit compliant with the IMS Content Packaging
 standard. This requirement originates from Reload Editor that served as a basis for developing LOCO-Analyst.

· Domain ontology for your course, that is, an ontology defining concepts and relationships specific to the subject domain of your course. The structure of this ontology is determined by the semantic annotation services of the KIM
 platform that are used to semantically annotate diverse kinds of learning artifacts (lessons, quizzes, students’ messages, etc.). Details about how to create such an ontology are given in a separate document “Using KIM’s annotation facilities”.

� � HYPERLINK "http://www4.wiwiss.fu-berlin.de/bizer/d2rq/" �http://www4.wiwiss.fu-berlin.de/bizer/d2rq/�

� � HYPERLINK "http://www.imsglobal.org/content/packaging/" �http://www.imsglobal.org/content/packaging/�

� � HYPERLINK "http://www.ontotext.com/kim/" �http://www.ontotext.com/kim/�

